

Predicting Indium (In) and Tellurium (Te) Availability

Lindsey V. Maness, Jr. Geologist Golden, CO USA <u>LVManess@Comcast.net</u> www.China-Resources.net

Hubris or Humility

- Prior resources depletion predictions have been very inaccurate.
- Oil & gas depletion estimates are presented.
- USGS = "At Least" or "Minimum" resources.
- <u>Clarke Number</u> can Give "Maximum."
- New methodology presented more accurate.

Resources Depletion Predictions

- August 27, 1859: Oil officially discovered in Titusville, PA, USA
- 1901: Spindletop, TX. Giant oil field began producing more than all others at that time.
- 1914: US BOM predicted that all U.S. oil reserves would be depleted by 1924.
- 1939: The US DOI announced that the world had only 13 years of petroleum reserves left.
- 1951: The US DOI announced that the world had only 13 years of petroleum reserves left.
- 1977: Former President Carter predicted depletion of all the world's oil reserves by 1990.

- 1970s-present: Canada's tar sands oil more than in Saudi Arabia. (New Economics.)
- 1980s-present: Dr. Jan Krason UN studies confirm that natural gas in clathrates (gas hydrates) will meet 1000s of Years of Demand. Presence known: Nobody cared. (Same Te & In)
- 2009: Marcellus Shale (WV-PA-NY) Gas Field may be as big as the largest ever discovered.
- Innumerable small-to-large discoveries cumulatively continue to meet our needs.

Methodology Conclusion

- The methodology used to officially forecast supplies of mineral commodities is woefully inaccurate.
 - Dependent solely upon (proven) resources.
 - Ignores probable new discoveries & technology.
- A new methodology to forecast supplies is presented herein.

Clarke Number

 Frank Wigglesworth Clarke (1847-1931) is considered to be the "Father of Geochemistry."

• The "*Clarke Number*" is an estimate of the amount of elements and compounds in the crust of the earth.

Data About the Earth

- Mean density of continental crust
 - 2.7 g/cm³ = 2.7(1x10⁻³) kg/(1x10⁻⁵)³ km³ = 2.7 x 10¹² kg/km³
- Earth's land area
 - 1.49 x 10⁸ km²
- Volume of earth's land area @ 3 km thickness
 - 4.47 x 10⁸ km³
- Weight of earth's land area @ 3 km thickness
 - (4.47 x 10⁸ km³)(2.7 x 10¹² kg/km³) = 12.069 x 10²⁰ kg = 12.069 x 10¹⁷ metric tons

Clarke Numbers for Selected Elements and \sum Metric Tonnes in 3 km of Crust

	Parts Per Million	Metric Tonnes x 10 ¹¹
Arsenic (As)	1.8	21.72
Bismuth (Bi)	0.17	2.052
Cadmium (Cd)	0.2	2.414
Gallium (Ga)	15	181.0
Germanium (Ge)	1.5	18.10
Mercury (Hg)	0.08	0.9655
Indium (In)	0.1	1.207
Antimony (Sb)	0.2	2.414
Selenium (Se)	0.05	0.6035
Tin (Sn)	2	24.14
Tellurium (Te)	0.01	0.1207

Ma(Mr/Ma){(Vf)(Vp)(Vd)(Vt)} = Predicted Supply

- Ma = Maximum Amount of commodity = Clarke Number x tonnes in a specified volume.
- Mr = Maximum Recoverable Amount = Total amount recovered during historical times of an equivalent commodity.
- Vf = Variable, Financial ≥ 0.0000 ≤ 1.0000 = Availability of financing.
- Vp = Variable, Political Will ≥ 0.0000 ≤ 1.0000 = 1 -Political limitations imposed on extraction, processing,

- Vd = Variable, Concentration Ratio ≥ 0.0000 ≤ 1.0000 = Proportion concentrated by geological forces.
- Vt = Variable, Technology \geq 0.0000 \leq 1.0000.

Commodity Availability (Preliminary Rough Estimate)

- ≥ 3 TW Necessary for World Energy Capacity.
- Module Lifetime ≈ 20 Years.
- PV Market in 2010 ≈ 10 GW.
- Main(Mrin/Main){(Vfin)(Vpin)(Vdin)(Vtin)} = (Mrin) (1.207 x 10¹¹) tonnes {(1.0)(1.0)(0.01)(1.0)} ≈ 0.12 x 10⁵ tonnes ≈ 10,000 GW = 10 TW ≈ 70 Years.
- Mate(Mrte/Mate){(Vfte)(Vpte)(Vdte)(Vtte)} = (Mrte) (0.1207 x 10¹¹tonnes {(1.0)(1.0)(0.1)(1.0)} ≈ 0.12 x 10⁵ tonnes ≈ 10,000 GW = 10 TW ≈ 70 Years.

- Exploration for **ore** (Economic concentration)
- Acquire properties/Permits
- Mine
- Concentrate/Process
- Smelt/Refine
- Sell to users
- Manufacture end products
- Market end products

Concentrate/Process Methods

- Specific gravity
- Size separation
- Magnetics
- Electrical (Electroplating, ...)
- Flotation
- Retort (Decanting and vaporizing/condensing)
- Solution (Acids, bases, ...)
- Centrifugation
- Oxidation/Reduction
- •

Flotation Invented in 19th Century

- Used in concert with (after) other methods
- Finely ground concentrated ore
- Wide-Spectrum "Soap" vs. Narrow-Spectrum
 - Wide-Spectrum = All Sulfides
 - Narrow-Spectrum = One or Few Sulfide Minerals

Multiple Commodities Require Wide-Spectrum Flotation (e.g., Te, In, Ga, Ge, Sb, Se, Hg, Cd ...)

(With or Without Vacuum)

- Commodities have different melting & vaporization temperatures
- Concentrate and separate multiple commodities cheaply and efficiently
- Low-tech, well-understood technology
- Patents long-expired

Melting & Vaporization °C

	Melting Point	Vaporization Point
Arsenic (As)		613 (Sublimates)
Bismuth (Bi)	271.3	~1,560
Cadmium (Cd)	320.9	765
Gallium (Ga)	29.78	2,403
Germanium (Ge)	937.4	2,830
Mercury (Hg)	-38.87	356.58
Indium (In)	156.61	~2,000
Antimony (Sb)	630.5	1,380
Selenium (Se)	217	~684.9
Tin (Sn)	231.89	2,270
Tellurium (Te)	~449.5	~989.8

Indium & Tellurium Exploration Targets

Indium	Tellurium	Explanation
Yes	Yes	Metallic massive sulfides (Pb-Zn-Ag-Cu-Ni)
Yes	Yes	Au-Ag-Cu tellurides
Yes	No	Sn mines
No	Yes	Frasch Process sulfur (~0.5% is Se + Te +)
No	Yes	Sour crude processed sulfur
Yes	Yes	Metals mine waste dumps
Yes	Yes	Smelter waste piles
Yes	Yes	Coal waste dumps (high-sulfur)

Synergy/Relationships

- Te, In, As, Ga, Ge, Sb, ..., tend to occur together with chalcophile elements (O, S, Se, Te ...).
- In also occurs preferentially in Sn Oxide deposits.
- O-S-Se-Te are in a single column in the periodic chart of elements, meaning they have pronounced chemical similarity.
- Volatility of Te, In, As, Ga, Ge (retort implications)
- Multiple-commodity production should be considered for Te, In, As, Ga, Ge.

Areas of Major Potential (US)

- Ducktown, TN (Massive Sulfides)
- Leadville, CO (Massive Sulfides)
- Joplin, MO (Massive Sulfides)
- WV, IL, IN (High-Sulfur Coal Waste Dumps)
- Hydrothermal Deposits (CA, NV, CO, ...)
- {Note: EPA's Brownfields Program provides
 Incentives to remediate contaminated sites.}
- <<Note: World's best may be mountainous Cuslag heaps on Cyprus (*e.g.*, Troodos).>>

Production Necessities

- Existence of desired commodities in economic concentrations, etc.
- Logistics (roads, electrical, water, labor, ...)
- Availability of properties for mining
- Financing
- Permitting (regulations & legalities)
- An assured long-term market

- Mine development funding is unavailable.
- Permits cannot be acquired. (Political Will)
- Permits are delayed for years.
- Access to properties is prevented.
- Sales cannot be made by mines to PV buyers.

Recommendations

- Continue research on mineralized areas and mine/smelter waste dumps, etc., to enable generation of reasonable supply/demand data.
- Create a <u>Commodities Exchange</u> for the semiconductor (PV) elements to bestow confidence that materials produced will be salable at a reasonable price.

Potential Sources of Information

- United States Geological Survey (esp. Library)
- {former} US Bureau of Mines (reports)
- Indium Corporation
- First Solar (Te database probably extensive)
- National Renewable Energy Laboratory
- Lindsey Maness' Web-Site http://www.China-Resources.net

Insufficient Data to Plot Supply/Demand Curves Synergistic Relationships Further Complication

- Ample tellurium (Te) for foreseeable future.
- Ample indium (In) for foreseeable future.
- Further research is necessary on mineralized areas and development of new techniques.

Reality Check

In & Te Exist in Quantity, BUT!!! Any Number times 0 = 0

- Vf = Variable, Financial ≥ 0.0000 ≤ 1.0000 = Availability of Financing.
- Vp = Variable, Political Will ≥ 0.0000 ≤ 1.0000
 = 1 Political Limitations Imposed on Extraction, Processing,
- **Recycling** & improved efficiency is necessary.
- Non-geological shortages are very probable.

Predicting Indium (In) and Tellurium (Te) Availability

Lindsey V. Maness, Jr. Geologist Golden, CO USA <u>LVManess@Comcast.net</u> www.China-Resources.net